
Postprint

Hypergraph-based Modeling of Ad-Hoc

Business Processes

Artem Polyvyanyy and Mathias Weske

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam

D-14482 Potsdam, Germany
{Artem.Polyvyanyy,Mathias.Weske}@hpi.uni-potsdam.de

Abstract. Process models are usually depicted as directed graphs, with
nodes representing activities and directed edges control flow. While struc-
tured processes with pre-defined control flow have been studied in de-
tail, flexible processes including ad-hoc activities need further investi-
gation. This paper presents flexible process graph, a novel approach to
model processes in the context of dynamic environment and adaptive
process participants’ behavior. The approach allows defining execution
constraints, which are more restrictive than traditional ad-hoc processes
and less restrictive than traditional control flow, thereby balancing struc-
tured control flow with unstructured ad-hoc activities. Flexible process
graph focuses on what can be done to perform a process. Process par-
ticipants’ routing decisions are based on the current process state. As a
formal grounding, the approach uses hypergraphs, where each edge can
associate any number of nodes. Hypergraphs are used to define execu-
tion semantics of processes formally. We provide a process scenario to
motivate and illustrate the approach.

Key words: business process modeling, hypergraph-structured process,
ad-hoc process, process formalism, execution semantics

1 Introduction

Process models provide companies efficient means for managing their daily rou-
tines. A business process model consists of a set of activity models and execution
constraints between them. A business process instance represents a concrete case
in the operational business of a company, consisting of activity instances [1]. A
business process model represents a collection of process instances that handle
the same business task. The key idea is that a business task can be managed
differently under special conditions, thus resulting in different process instances.
Process models allow flexible business task handling where a process instance
can evolve multiple possible scenarios. Process model reasonable lifecycle, in
static environment, usually assumes large level of flexibility at early stages slowly
evolving to best-practice scenarios at its maturity.

For non-trivial processes, characterized mainly by dynamic environment, the
level of required flexibility for its participants is usually high and should be

2 Artem Polyvyanyy and Mathias Weske

kept at all stages of process lifecycle. Such processes can be observed in complex
adaptive systems, also made up of people or artificial intelligence agents. Process
flexibility is no longer solely explained by the variability in business task scenarios
but also by variability in participants’ (process executors’) behavior and ongoing
environment changes. These systems are dynamic and open, rather than simple
and optimized for best-practice scenarios. A good example of such a system is
an educational service system where a student can undertake different paths to
acquire a service of education. At the same time, other system participants are
also flexible in their behavior and execute process tasks in the ad-hoc manner.
For highly dynamic environments many research issues need to be addressed in
a different way, e.g., process modeling.

In this paper we present a formal approach for modeling flexible business
processes driven by adaptive behavior of process participants—flexible process
graph (FPG). Process routing mechanism is enhanced to allow participant adap-
tation to environment change on a control flow level by allowing a flexible choice
of the next activity to accomplish at each state of a process instance. In the
core of the idea lies generalization of a process graph structure to a hypergraph
structure. Further, the process execution semantics is defined for a hypergraph-
structured process. A graph edge evolves from specifying a sequence control flow
pattern on two activities to a set of activities that can be accomplished in the
order determined when executing a process instance.

The rest of the paper is organized as follows. In the next section we motivate
the proposed approach by investigating modeling and execution support for pro-
cesses that represent large collections of process instances. The Business Process
Modeling Notation (BPMN) [2, 3] ad-hoc process is taken as a starting point.
In section 3 we introduce FPG. We present the core idea, formalism, execution
semantics, and graphical representation. In section 4 we return back to the mo-
tivation scenario and apply FPG formalism to model the process. Related work
is investigated in section 5. The paper closes with conclusions that summarize
our findings.

2 Motivation

Processes governed by adaptive participants’ behavior caused by dynamically
changing environment are characterized by large amounts of process instance
variants. The problem of state of the art process modeling techniques for such
scenarios can be identified as an attempt to model what should be done by a
process participant. Adaptive participants’ behavior requires an extensive choice
of next steps at each process state leading to a necessity of modeling constructs
for each possible proceeding. As a motivation, we propose to take a look at a
process that assumes large amount of process instances.

Figure 1 shows an example of the ad-hoc process from [2] that proposes
to look at process of writing a book chapter. The example ad-hoc process in-
cludes six tasks: “researching the topic”, “writing text”, “editing text”, “gener-
ating graphics”, “including graphics in the text”, “organizing references”, and is

Hypergraph-based Modeling of Ad-Hoc Business Processes 3

~

researching

the topic

generating

graphics
writing text

organizing

references
editing text

including

graphics in

the text

Fig. 1. BPMN ad-hoc process example

visualized using BPMN 1.0 notation. Let us assume a simplified version of the
process when the ad-hoc process is configured for sequential execution and each
task has to be accomplished exactly once. Under the assumption the model from
Figure 1 describes an extreme case of 6! = 720 possible process instances.

One can introduce additional dependencies between tasks in the process, such
as “writing text” must be executed before “editing text”: the inverse order is just
not realistic. Let us identify a complete set of constraints. Let the desired process
be such that the task of “researching the topic” should always happen first.
Further, the task of “including graphics in the text” can only be performed once
both “writing text” and “generating graphics” tasks are accomplished. Finally, it

GG

WT

WT

OR

ET

GG

GG

OR

GG IG

GG

ET

OR

ET

IG

ET

IG

IG

ET

OR

IG

IG

OR

ET

OR

OR

ET
RT

Fig. 2. BPMN process model that covers concretized scenario of 18 instances.
RT=“researching the topic”, WT=“writing text”, ET=“editing text”, GG=“generating
graphics”, IG=“including graphics in the text”, and OR=“organizing references”

4 Artem Polyvyanyy and Mathias Weske

is possible to proceed with “editing text” or “organizing references” once finished
with “writing text”. Described constraints reduce the amount of desired model
instances from 720 to 18.

BPMN ad-hoc processes are not executable, but rather are just requests to a
process participant on a fulfillment of work packets, e.g., to write a book chapter,
containing suggestion on possible work packets decomposition to smaller sub-
tasks. In order to provide execution support for the concretized version of the
sample process, a model has to formally represent all the execution constraints.

Figure 2 shows the BPMN diagram to model the exact collection of desired
process instances. The model proposed is one possible solution. It is feasible to
derive other models that describe exactly the same process by trading between
the number of gateways and activity model occurrences in the diagram.

The model from Figure 2 represents another extreme case of a precise pro-
cess specification suitable for execution. Besides that it is a complex task to
derive such a model, the model suffers of elements explosion, i.e., complex gate-
way structures and multiple activity model occurrences. Moreover, any model
modification becomes laborious, e.g., you may want to introduce a review task
between “writing text” and “editing text” tasks. Local model modifications are
not enough to reflect global ad-hoc process logic. The model should be adapted
to incorporate global execution constraints, i.e., constraints of modified activities
with all other activities of the model.

In the next section we introduce FPG—a formal approach that allows rep-
resenting large collections of process instances. Afterwards, we will return back
to the concretized process scenario and implement it as FPG.

3 Flexible Process Graph

Prior to start with presentation of the flexible process graph approach, we briefly
summarize what is desired to achieve. FPG is envisioned as a technique for
modeling processes that incorporate adaptive participants’ behavior on a control
flow level and allows specification of task execution constraints. The modeling
technique has to permit intuitive process visualization. Developed process models
should represent large collections of process instances in a compact way. Finally,
FPG has to provide a formal process execution semantics that allows tracking
of the process execution state.

In the core of the idea for modeling flexible process graphs lies generalization
of a directed graph edge which defines a sequential execution on connected ac-
tivities. Figure 3(a) shows a directed graph edge that specifies a sequence control
flow pattern. An application of the sequence control flow pattern will result in
activity b to get enabled (become available for execution) only after activity a

has terminated (was executed). Thus, a process participant is dictated on what
should be done next in a process instance.

Figure 3(b) gives an example of a hyperedge (generalization of a graph edge)
that connects 3 nodes: a, b, and c. As opposite to a graph-based sequence con-
trol flow pattern, one can allow that within a hyperedge a process participant

Hypergraph-based Modeling of Ad-Hoc Business Processes 5

a b

(a)

a b
c

(b)

Fig. 3. (a) Graph-based control flow edge, (b) hypergraph-based control flow edge

can choose which activity to execute next. The decision reflects his/her adaptive
behavior in the context of a dynamic environment. A process model becomes
hypergraph-, rather than graph-structured. At the first step of the process exe-
cution either activity a, b, or c can be performed. At the next step selection is
reduced to 2 non-terminated activities. The third step is completely determinis-
tic and finishes execution of the edge.

3.1 Hypergraph Preliminaries

In mathematics, a hypergraph is generalization of a graph [4, 5]. Hypergraph
edges (hyperedges) are arbitrary sets of nodes. Thus, a hyperedge is an edge
that connects multiple nodes.

Formally, a hypergraph is a pair (N,E) where N is a set of elements, called
nodes or vertices, and E is a set of non-empty subsets of N , called hyperedges.
Therefore, E is a subset of P(N)\∅, where P(N) is the power set of N . Figure 4
visualizes the example of a hypergraph. Here, N = {v1, v2, v3, v4, v5, v6, v7, v8},
E = {e1, e2, e3, e4}, e1 = {v1}, e2 = {v2, v3, v4, v5, v6}, e3 = {v4, v5, v6}, and
e4 = {v5, v8}.

e1

e2

e3

e4

v1

v2

v3

v4
v5

v6

v7

v8

Fig. 4. Hypergraph example

Hypergraph structure is used as the structure of flexible process graphs. Hy-
peredges in a hypergraph can intersect. This fact is used to derive semantics for
passing control flow initiative from a hyperedge to a hyperedge, thus specifying
process instance development.

6 Artem Polyvyanyy and Mathias Weske

3.2 Formalism

In this section we present the flexible process graph formalism which includes
definition of process state and process execution semantics. Process execution
semantics describes process state transition principles.

Let us start with the definition of a flexible process graph.

Definition 1. A flexible process graph (FPG) is a triple (A,E, T) where:

◦ A is a finite set of activity nodes
◦ E is a finite set of edges e = 〈I(e), O(e)〉 ∈ E, A ∩ E = ∅
− I : E → P(A) is a function defining edge input activities
−O : E → P(A)\∅ is a function defining edge output activities
− ∀e ∈ E : I(e) ∩O(e) = ∅

◦ T is an edge type function, T : E → {and, xor, or}.

In the case of FPG, a process structure is given by a hypergraph (A,E).
Activities A are modeled as hypergraph nodes. Each edge in FPG is a subset
of activity nodes. A hyperedge e is split into two subsets of input (I(e)) and
output (O(e)) nodes to obtain a directed hypergraph. The subsets are mutually
disjoint. Edge outputs, and thus edges, can not be empty. Unlike regular graph-
structured process models that contain special routing nodes—gateways, FPG
introduces edge types that implement routing decisions.

Directed edges in FPG are crucial for definition of the process execution
semantics. A regular process graph directed edge defines sequence control flow
pattern; an activity in a process is enabled for execution after the completion of
a preceding activity. Similar, output activities in an FPG edge are enabled for
execution after the completion of all of the edge input activities. Once enabled,
the edge output activities can be accomplished in any order. If an FPG edge has
no input activities, output activities of such an edge are enabled for execution
at process instantiation. These activities are the first candidates proposed for
completion to process participants.

FPG gives a compact way of representing large collections of process instances
as the main building block of a process, hyperedge, represents a complete set of
process instances on contained nodes. Adaptive participants’ behavior in a con-
dition of dynamic process environment is achieved with the help of edge routing
decisions and further selection of an activity to accomplish next from the edge
output set. A process participant is guided while process instance execution by
edge routing decisions (also taken based on a dynamic process environment state)
and exposes adaptive behavior by determining the order in which to accomplish
proposed activities. The order in which activities are performed is adapted by
the process participant at execution time as a reaction to environment changes.

3.3 Execution Semantics

FPG execution semantics defines allowed process instances. The structure of
FPG is fixed and does not change during execution of a process instance. Dy-

Hypergraph-based Modeling of Ad-Hoc Business Processes 7

namics of a process represented as FPG is specified by process state transitions.
A state of FPG may change according to state transition rules.

Definition 2. A state of a flexible process graph (A,E, T) is defined by a state
function S : A → N0 × N0 mapping a set of activity nodes onto the pairs of
natural numbers including zero (N0 = N ∪ {0}).

When in certain state, each activity node a of FPG is assigned two numbers
S(a) = (ω, β) ∈ N0 × N0. Sω(a) = ω (white tokens) specifies the number of
instances of activity a that need to be accomplished from now on in the process
instance. Respectively, Sβ(a) = β (black tokens) specifies the number of activity
instances so far accomplished in the process instance. The FPG state function
role is similar to the marking (or state) function of Petri nets [6].

Process Instantiation Upon creation of a new process instance the FPG state
function has to be initialized. Initialization is performed in two steps:

1. S(a) is set to (0, 0) for all a ∈ A

2. For each activity a ∈ A the initial enabling is performed.

The initial activity enabling identifies a set of start activity candidates. An
activity a is enabled at process start if ǫ∗(a) holds, where ǫ∗ is a predicate that
specifies initial activity enabling condition ǫ∗ : A → {true, false}.

ǫ∗(a) = ∃e ∈ E : a ∈ O(e) ∧ I(e) = ∅ ∧ cond(e, a)

The cond : E × A → {true, false} predicate implements edge type t ∈ T

routing decisions (e.g., ∀a ∈ O(e) : cond(e, a) = true, if T (e) = and). If ǫ∗(a)
holds, the process state S is modified to give S′, such that S′(a) = S(a)+ (1, 0).

Activity Firing An activity a can fire in an FPG process instance if it is
enabled (Sω(a) > 0). Activity firing results in the process state S change to
S′, such that S′(a) = S(a) + (−1, 1), i.e., one white token gets painted black.
Activity firing is instantaneous, consumes no time, and indicates a completion
of the corresponding activity. After activity a has fired, the activity enabling has
to be performed on a set composed of output activities of a:

⋃

{e∈E|a∈I(e)}

O(e)

Activity Enabling Activity node enabling defines rules for modification of
activity node state and thus of process instance state. An activity a can be
enabled after execution of an activity aβ if ǫ(aβ , a) holds, where ǫ is a predicate
that specifies activity enabling condition ǫ : A×A → {true, false}.

ǫ(aβ , a) = ∃e ∈ E ∀ai ∈ I(e) : aβ ∈ I(e)∧a ∈ O(e)∧Sβ(ai) ≥ Sβ(aβ)∧cond(e, a)

8 Artem Polyvyanyy and Mathias Weske

Activity a enabling depends on execution of the preceding activity, e.g., aβ .
Activity a can be enabled if there exists an edge e such that a is the output
activity of e and aβ is the input activity of e. Further, for each input activity ai
of the edge e it holds that the number of accomplished instances of ai is at least
the number of accomplished instances of aβ , i.e., the number of black tokens of
each of the input activity of the edge e is at least the number of black tokens of
the activity aβ . Finally, the edge e type t ∈ T condition must hold.

If ǫ(aβ , a) holds, the process state S is modified to result in state S′, such
that S′(a) = S(a) + (1, 0).

Process Termination A process instance terminates when there is no activity
to execute, i.e., no activity is enabled, ∀a ∈ A : Sω(a) = 0.

3.4 Graphical Representation

Graphical representation of FPG can be mapped onto triple (A,E, T) and vice
versa (in both directions). For instance, Figure 5 visualizes the example of a flex-
ible process graph applying developed graphical notation. Developed notation
preserves hypergraph visualization approach proposed in Figure 4 and differen-
tiates presentation of edge types and activities (input activities are located on
the borderline of the corresponding edge region, e.g., node a from edge e2).

b

c

x

y

a

e1

e2 e3

Fig. 5. Flexible process graph example

The model from Figure 5 can be mapped onto (A,E, T) triple such that:
A = {a, b, c, x, y}, E = {e1, e2, e3}, where e1 = 〈∅, {a}〉, e2 = 〈{a} , {b, c}〉, and
e3 = 〈{b, c} , {x, y}〉. Finally, T (e1) = T (e2) = and, T (e3) = xor. Here, we use
circles to represent process activity nodes.

Apparently, one can follow the reverse direction and visualize FPG by pos-
sessing formal process definition in a form of (A,E, T) triple.

4 Flexible Process Graph Example

After having presented the flexible process graph approach for modeling pro-
cesses that allow adaptive behavior in the context of ongoing environment
changes, we would like to return back to the example process scenario from
section 2. We will now formalize its concretized version as FPG.

Hypergraph-based Modeling of Ad-Hoc Business Processes 9

 researching

 the topic
writing text

editing text

generating

graphics

including

graphics in

the text

organizing

references

Fig. 6. FPG model of process from Figure 2

Figure 6 visualizes the flexible process graph that is obtained from triple
(A,E, T), where A consists of RT =“researching the topic”, WT =“writing
text”, ET =“editing text”, GG =“generating graphics”, IG =“including graph-
ics in the text”, and OR =“organizing references”, E = {e1, e2, e3, e4}, e1 =
〈∅, {RT}〉, e2 = 〈{RT} , {GG,WT}〉, e3 = 〈{GG,WT} , {IG}〉, and e4 =
〈{WT} , {OR,ET}〉, and function T is such that T (e1) = T (e2) = T (e3) =
T (e4) = and.

Proposed FPG formal model represents the same process as in Figure 2 in
a compact way. Execution semantics of the FPG model allows the exact 18
process instances. First, upon process instantiation, white and black tokens for
each activity node are set to 0. After the process initialization phase, the activity
RT gets enabled, S(RT) = (1, 0). Because it is the only enabled activity, it
will eventually fire and result in S(RT) = (0, 1). After activity firing, activity
enabling takes place on the set of output activities {GG,WT}. As a result,
S(GG) = S(WT) = (1, 0). The firing of the WT activity enables OR and ET .
Finally, after the second activity from the set fires and S(GG) = S(WT) = (0, 1),
the activity IG gets enabled. The process continues until S = (0, 1) for all the
activities. Then, the termination condition holds and the process terminates.

The FPG model allows adaptive process participants’ behavior forced by
environment changes. E.g., once finished with “researching the topic” the process
participant can proceed with “generating graphics” or “writing text”, but might
be constrained to the option of “writing text” because of the current environment
that provides no access to a graphics editor tool.

5 Related Work

Process models that allow adaptation to environment changes cover large collec-
tions of process instances. Expansion of process allowed instances in models can
be achieved by techniques employing adaptive changes in process models. Three
known dimensions of change in process models are dynamism, adaptability, and
flexibility [7]. Following, we discuss approaches that address the dimensions of
change in process models.

10 Artem Polyvyanyy and Mathias Weske

ADEPTflex [8] is a formal foundation for support of dynamic structural
changes of running process instances. First, a formal workflow model is defined
(ADEPT), then a complete and minimal set of change operations (ADEPTflex)
is introduced. Additionally, correctness properties are defined to check whether
a change can be applied to a process instance.

Similar, in [9] the ability of workflows to adapt the structure of running
instances is addressed. The approach is based on a formal model of workflow
schema. A workflow schema is a directed graph structure with homogeneous
nodes.

Worklets [10, 11] introduce dynamism in workflow through the support of
flexible work practices. Worklet is an extensible repertoire of sub-processes as-
signed to each workflow task. When executing a process instance, a dynamic
selection of appropriate sub-process from available is performed.

In [7] the authors introduce the notion of open workflow instance. An open
instance consists of a core process and several pockets of flexibility. A pocket of
flexibility is a set of workflow fragments and a special build activity. The build
activity provides rules for concretizing the pocket with a valid composition of
available fragments at execution time.

All of the presented approaches extend amount of model initially allowed pro-
cess instances by performing process graph transformations. The primary goal
of these approaches is to address variability, exceptions handling, and change
in business case handling. By introducing model transformation rules, the ini-
tial model becomes non-transparent. In the case of process participant adaptive
behavior it is extremely hard to foresee and manage all of the possible model
changes, to introduce new ones, or to remove already developed. Contrary to the
discussed approaches, the developed approach of FPG is a modeling technique
that allows models to naturally represent adaptive participants’ behavior in the
context of environment changes.

The applicability of hypergraphs for modeling task was studied in [12]. In-
spired by hypergraph formalism, the authors propose metagraph structure. As
stated in [13], metagraphs were not initially intended for modeling workflows.
The primary goal of metagraphs is to represent transformation relations be-
tween two sets of objects. Later, the approach was extended to represent work-
flows [14, 15, 16]. Activities in a metagraph-based workflow are represented by
arcs that relate objects consumed and produced during activity execution.

Case handling [17, 18, 19, 20] is a paradigm for support of flexible business
processes. It is strongly based on data as the typical product of the processes. In
workflow management what should be done in a process instance is determined
by predefined control structures. Case handling focuses on what can be done to
achieve a business goal. In case handling, process participants decide on how to
approach a goal state.

Similar to metagraphs, FPG employs hypergraphs for the task of workflow
modeling. However, FPG follows the well-accepted paradigm of modeling ac-
tivities as graph nodes, rather than as arcs. The generalized graph structure,
which is hypergraph, provides more space for representing workflow instances

Hypergraph-based Modeling of Ad-Hoc Business Processes 11

that assume adaptive participants’ behavior in the condition of highly dynamic
execution environment. Further, similar to case handling, a process participant
is allowed to decide what needs to be done to achieve a process goal. But unlike
in the case handling case, the decision is taken based on the activities already
performed (process history), and not based on data objects at hand.

6 Conclusions

This paper introduced flexible process graph as a new paradigm for supporting
modeling and execution of flexible business processes driven by adaptive par-
ticipants’ behavior in the context of environment changes. We started out this
survey with a motivating example of a process scenario. The example shows the
lack of support for modeling and executing the processes that do not fit into
the paradigm of modeling strict sequential control flow constructs. We then pro-
posed FPG formalism, as the mean for solving identified problems of present-day
workflow modeling techniques. The FPG process execution semantics, including
process instantiation, activity enabling, activity firing, and process termination
condition, was provided. The graphical notation for visualizing FPG processes,
which is based on proposed formalism, was presented.

Flexible operational processes where participants can undertake different
paths to reach a goal state are characterized by large amounts of process in-
stance variants. If one attempts to derive a model that captures all the variants
to allow process execution support, the model has to be specified to represent
all the constraints. FPG allows describing large amounts of activity execution
constraints in a compact way. Additionally, FPG provides process execution
support. The drawback of FPG is somewhat less intuitive process visualization,
as compared to well-accepted graph-based notations. FPG is not aiming at re-
placement of existing process modeling techniques, but at complementing them,
e.g., FPG can be applied in the region of a process where extensive flexibility is
required.

FPG allows easy process modification to capture new requirements. In the
case it is desired to introduce a review task between “writing text” and “editing
text” in the concretized process scenario from section 2, minor modifications are
required, i.e., to replace “editing text” task with a new “make review” task that
once accomplished enables “editing text”. Such local model modifications change
activity execution constraints globally following the FPG execution semantics.

Besides modeling of flexible processes, FPG allows representing basic control
flow patterns: sequence, parallel split, synchronization, exclusive choice, sim-
ple merge, as well as arbitrary cycles and structured loops [21]. Investigation of
the FPG applicability for modeling advanced control flow patterns, e.g., multiple
instance patterns, cancelation patterns, or advanced branching and synchroniza-
tion patterns, is the future work. FPG, as proposed in this paper, has no notion
of time. Activities do not take time. Similar to Petri nets, FPG only signals for
concurrent activity enabling. Introduction of true parallelism, i.e., formalization
of simultaneous activity execution by different participants, is the next step.

12 Artem Polyvyanyy and Mathias Weske

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer Verlag (2007)

2. OMG: Business Process Modeling Notation Specification. 1.0 edn. (February 2006)
3. OMG: Business Process Modeling Notation Specification. 1.1 edn. (January 2008)
4. Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd. (1985)
5. Berge, C.: Hypergraphs: The Theory of Finite Sets. Amsterdam, Netherlands:

North-Holland (1989)
6. Petri, C.: Kommunikation mit Automaten. PhD thesis, University of Bonn, Bonn,

Germany (1962) (In German).
7. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of Flexibility in Workflow Specifica-

tion. In: ER ’01: Proceedings of the 20th International Conference on Conceptual
Modeling, London, UK, Springer-Verlag (2001) 513–526

8. Reichert, M., Dadam, P.: ADEPT flex—Supporting Dynamic Changes of Work-
flows Without Losing Control. Journal of Intelligent Information Systems 10(2)
(1998) 93–129

9. Weske, M.: Formal Foundation and Conceptual Design of Dynamic Adaptations in
a Workflow Management System. In: HICSS ’01: Proceedings of the 34th Annual
Hawaii International Conference on System Sciences-Volume 7, Washington, DC,
USA, IEEE Computer Society (2001) 7051

10. Adams, M., ter Hofstede, A., Edmond, D., van der Aalst, W.: Implementing Dy-
namic Flexibility in Workflows using Worklets (2006)

11. Adams, M., ter Hofstede, A., Edmond, D., van der Aalst, W.: Worklets: A Service-
Oriented Implementation of Dynamic Flexibility in Workflows. In Meersman, R.,
Tari, Z., eds.: OTM Conferences (1). Volume 4275 of Lecture Notes in Computer
Science., Springer (2006) 291–308

12. Basu, A., Blanning, R.: Metagraphs and Their Applications (Integrated Series in
Information Systems). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

13. Basu, A., Blanning, R.: Metagraphs: A Tool for Modeling Decision Support Sys-
tems. Manage. Sci. 40(12) (1994) 1579–1600

14. Basu, A., Blanning, R.: Metagraphs in Workflow Support Systems. Decis. Support
Syst. 25(3) (1999) 199–208

15. Basu, A., Blanning, R.: A Formal Approach to Workflow Analysis. Info. Sys.
Research 11(1) (2000) 17–36

16. Basu, A., Blanning, R.: Workflow Analysis using Attributed Metagraphs. In:
HICSS ’01: Proceedings of the 34th Annual Hawaii International Conference on
System Sciences (HICSS-34)-Volume 9, Washington, DC, USA, IEEE Computer
Society (2001) 9040

17. van der Aalst, W., Berens, P.: Beyond Workflow Management: Product-Driven
Case Handling (2001)

18. van der Aalst, W., Weske, M., Grunbauer, D.: Case Handling: A New Paradigm
for Business Process Support (2005)

19. Günther, C., van der Aalst, W.: Modeling the Case Handling Principles with
Colored Petri Nets

20. Reijers, H., Rigter, J., van der Aalst, W.: The Case Handling Case (2003)
21. Russell, N., ter Hofstede, A., van der Aalst, W., Mulyar, N.: Workflow Control-

Flow Patterns: A Revised View. Technical report, BPMcenter.org (2006)

